Analyse the Simulated Dynamics
Once the dynamics of the community have been simulated, we can analyse the results to better understand the behaviour of the community. To do so, we provide a few functions to compute various properties of the community dynamics.
Let's first simulate the dynamics of a species-rich community with the niche model:
using EcologicalNetworksDynamics, Plots
S = 20 # Number of species.
C = 0.1 # Connectance.
foodweb = Foodweb(:niche; S, C)
m = default_model(foodweb)
B0 = rand(S) # Vector of initial biomasses.
t = 100 # Simulation time.
sol = simulate(m, B0, t)
retcode: Success
Interpolation: 3rd order Hermite
t: 43-element Vector{Float64}:
0.0
0.0826459514258767
0.20736567112434734
0.3510445490032309
0.5351801545733756
0.7932428369008673
1.0684525838037109
1.4768869358210566
1.9324331907505032
2.528752012074402
⋮
58.62549631929376
65.17112567662593
72.59306606016548
74.72234304923667
77.15275961354678
82.8606020330175
89.16557795325856
91.33246236260685
100.0
u: 43-element Vector{Vector{Float64}}:
[0.5118118487058613, 0.875911868255886, 0.3079854434448738, 0.7257632166193411, 0.244523716680892, 0.012385767784497181, 0.31626151150395077, 0.1295405873603872, 0.22248565849566382, 0.4555937492929675, 0.6920998400498157, 0.9033102982284691, 0.9741640714717302, 0.27475247256896596, 0.647273034252085, 0.2955885170480963, 0.2873695472699491, 0.46343742083951356, 0.6754740118625845, 0.9843212102380331]
[0.5407335648195932, 0.8833833234387226, 0.31153622636775696, 0.7539236897767229, 0.25198291690675617, 0.01309977074295025, 0.3333453070277649, 0.134827599483683, 0.23517792391190231, 0.46682283828011417, 0.7183461957676418, 0.8588659755790778, 0.9960751487725902, 0.2308232508045278, 0.6049722855333761, 0.2696402196701515, 0.26331526914525955, 0.4464205654015268, 0.5467119222305471, 0.88776910734476]
[0.5743779322097786, 0.8889636844430922, 0.31493109809441755, 0.7976050662339768, 0.2641879949099497, 0.014236267764335522, 0.3597818511297562, 0.14156695868716562, 0.2537892566613757, 0.4777156637285402, 0.7535044300815728, 0.7862807422969933, 1.0132576584246042, 0.18461881894074447, 0.5437695085813431, 0.23784353129627553, 0.23347669934286677, 0.4159319716515382, 0.40297085124866666, 0.7607644522256636]
[0.5978531092224991, 0.8886713814059886, 0.31650722253442404, 0.849404488103123, 0.2796661312593753, 0.015626622917720333, 0.3909854229124826, 0.1476035466764411, 0.27378151067277634, 0.48208868965184837, 0.7852003970892476, 0.7032412595894492, 1.009976928703251, 0.149562621148033, 0.4798572648528061, 0.20999369761440806, 0.2070324286635127, 0.379155409181899, 0.2962412015999316, 0.6434844458450257]
[0.6102359703685709, 0.8807558731948306, 0.31588259242120514, 0.917529380204351, 0.301737571315342, 0.017513073910970775, 0.4316231802905003, 0.1530412259833029, 0.29616527102336765, 0.47724727576116666, 0.8089416660139479, 0.6057325082541067, 0.9763298265871359, 0.12025679839780913, 0.41074032968841, 0.1843239023202062, 0.18241880324297366, 0.3370901225147105, 0.21735262264234712, 0.5345124059628465]
[0.6095215383064078, 0.8605476511198223, 0.3117705785964919, 1.0142389379864873, 0.33695816585184485, 0.020276231239796477, 0.4883841861129453, 0.15735160745808763, 0.32038762564751977, 0.45632694820946906, 0.8075015189052379, 0.4907434373595169, 0.8959926201334796, 0.09436271192273032, 0.33764735778991845, 0.16086654518881893, 0.15974171509509813, 0.2939851607632384, 0.16132377461920874, 0.4399180388786637]
[0.5984515858900258, 0.832291010592556, 0.3049608418043341, 1.1139125406539268, 0.3801729365459161, 0.023227610523766457, 0.5463612500829459, 0.15907606992520132, 0.33749520150248263, 0.42294242532389137, 0.7657264112032166, 0.3940446489055994, 0.7972134460555037, 0.07655440491289665, 0.2844216265991917, 0.1457524439402601, 0.14504966349586626, 0.26632927477691193, 0.13221740721617617, 0.38540326280519044]
[0.5748562310279652, 0.7843774800763377, 0.29260985991041444, 1.2381738481538247, 0.4555059385363559, 0.027266521435496016, 0.6223480893343434, 0.15855554312072126, 0.3502582678568921, 0.36452280459710956, 0.6560847030244737, 0.28912379922362336, 0.6648777060347549, 0.059182521180439075, 0.23650801702304958, 0.13401595188510587, 0.1336202491647527, 0.24828050499314566, 0.11246094484571513, 0.35062349271712695]
[0.5457531602396861, 0.7282336646841452, 0.2776820116583742, 1.3158291665130786, 0.5556808057490183, 0.030937820204889287, 0.6868585601910379, 0.15594270326075244, 0.3531417288446205, 0.30030889151270534, 0.5197126424064549, 0.21066838014245293, 0.5563946557407602, 0.04625514043590529, 0.2082308432123411, 0.12938663612332765, 0.12915247811188738, 0.24669701285081902, 0.10422944992150422, 0.34361872654380926]
[0.5082999039814072, 0.6557728648096189, 0.258211338417556, 1.3017556177989165, 0.7091741776428919, 0.034369176413833316, 0.7349996368406602, 0.15159734268562827, 0.34712142775182825, 0.23265885660556807, 0.3787738107473799, 0.1468908296694521, 0.47023686262299497, 0.034600059048045195, 0.19148193551860132, 0.13073457617410056, 0.13060277526445674, 0.25957406063451627, 0.10261408846104277, 0.35663284910078497]
⋮
[0.1887680216998057, 0.2220562565803309, 0.21839179446281248, 0.02496017471530172, 1.0904195979385287, 0.1874344259628312, 0.6365653196031275, 0.28978738438098534, 0.2202282226178711, 0.24980155533181939, 0.18636547538163598, 1.0716651224448e-7, 0.39677241454199724, 0.0, 0.22764579958687886, 0.2276490886317253, 0.22764908863207972, 0.30942977304205954, 0.18832201473888696, 0.46927713477737165]
[0.18767409810930297, 0.22069136944414305, 0.21833575240741546, 0.022522528738190634, 1.0913638924103524, 0.1871661176479213, 0.6364904610100376, 0.2886445742797661, 0.2195152616626733, 0.25442414170718053, 0.18645667096735646, 1.839386672519918e-8, 0.39648091984286643, 0.0, 0.22765201183596367, 0.22765333815320082, 0.22765333815382366, 0.3087448312145005, 0.18854741383984797, 0.4694243527203762]
[0.18687481725158295, 0.21970330677376526, 0.218274083859716, 0.020467116558773514, 1.0920688000058043, 0.18670054818374676, 0.6364356661376624, 0.28755851234936963, 0.21898932316717734, 0.2581229353134831, 0.18672925004916938, 2.221935275618426e-9, 0.3962601522827443, 0.0, 0.22764963350274964, 0.2276501184292938, 0.22765011842698804, 0.30823520167295054, 0.18870667811644007, 0.46953492976956296]
[0.18670625748812208, 0.2194962209430235, 0.21825572220628647, 0.019978816969484017, 1.092221172798806, 0.18655716958717983, 0.6364240738477444, 0.2872931132693452, 0.21887645553386897, 0.25895754840352675, 0.1868213758410286, 1.3385103947011516e-9, 0.39621116415658725, 0.0, 0.22764782915871937, 0.22764820203804578, 0.22764820203791228, 0.3081250566524174, 0.18873883210251138, 0.4695594663308048]
[0.18653759182448484, 0.21928966785569937, 0.21823421566262752, 0.01946468136903888, 1.0923748413110612, 0.1863944262234251, 0.6364123712161648, 0.2870140465627169, 0.21876229683846282, 0.2598161596510511, 0.18692836220891756, 7.490627167283345e-10, 0.3961606904003529, 0.0, 0.22764540667732083, 0.22764568189138598, 0.22764568189165998, 0.30801324648846035, 0.18877021108911762, 0.46958475870221894]
[0.1862194777137176, 0.21890297754921412, 0.21818176644308862, 0.01840864646167533, 1.0926696215953753, 0.18602611540194774, 0.6363903042513963, 0.2864485271838223, 0.2185425349517617, 0.2615094780538656, 0.18717718190755667, 1.7096300973618637e-10, 0.39606042098741573, 0.0, 0.22763883329768073, 0.22763896088187358, 0.2276389608803194, 0.30779693550509335, 0.18882660714879745, 0.46963521379152434]
[0.1859623924909663, 0.21859547889501432, 0.21812188301702173, 0.017439407386102966, 1.0929169068133382, 0.18565349048683255, 0.6363723392590189, 0.28594886721236806, 0.21835875077446046, 0.2629680149686131, 0.1874363345628995, 3.197572977003236e-11, 0.39597240353530194, 0.0, 0.22763090902499133, 0.22763096309087663, 0.22763096309180272, 0.3076147046403202, 0.18886838605288475, 0.4696797836015557]
[0.1858909913957004, 0.21851141512119648, 0.21810112142579804, 0.017144967138472605, 1.0929879859242544, 0.18553514674956936, 0.6363672901028496, 0.2858026750107307, 0.21830632161105726, 0.26339106398549667, 0.1875199934588171, 1.908681569849089e-11, 0.39594632700646404, 0.0, 0.2276281415199623, 0.22762818269486473, 0.22762818269489915, 0.3075624564816116, 0.1888791552766781, 0.46969305501499653]
[0.18566292763827735, 0.21824859546300718, 0.21801915680768938, 0.016120083177245413, 1.0932234459567094, 0.18511218322205608, 0.6363508253078042, 0.28531718136546314, 0.2181338919986182, 0.2647976057000078, 0.1878231688492163, 1.1560656986808045e-12, 0.39585695201687854, 0.0, 0.22761740539273803, 0.22761741768429122, 0.22761741768404836, 0.3073899258293515, 0.18891071395096595, 0.46973895711092645]
When running the dynamics of a rich initial pool of species, we generally observe the extinction of some species. You can access the number of surviving species at the end of the simulation with:
richness(sol[end]) # Number of surviving species at the end of the simulation.
19
You can also get the trajectory of the species richness through time with:
richness(sol) # Richness at each time step.
43-element Vector{Int64}:
20
20
20
20
20
20
20
20
20
20
⋮
19
19
19
19
19
19
19
19
19
Similarly, you can compute the persistence, that is the proportion of species that are present at each time step:
persistence(sol) # Equivalent to: richness(sol) ./ S
43-element Vector{Float64}:
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
⋮
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
Or the total biomass of the community:
total_biomass(sol)
43-element Vector{Float64}:
10.000053791973562
9.747773101005423
9.419574437952654
9.105933779644243
8.779430400098102
8.417846351184783
8.111604062755859
7.7532524741416475
7.444714478347571
7.136102190189283
⋮
5.561523649792561
5.559441092538786
5.557611194072916
5.557166680703924
5.556694338613228
5.55571256417709
5.554801978936346
5.554524472632505
5.55355785515645
Or the shannon diversity index:
shannon_diversity(sol)
43-element Vector{Float64}:
16.71723451931988
16.738036028994124
16.671102062967147
16.51655369628933
16.28808045783551
15.990836783182258
15.715834566077367
15.349174406804075
14.983244696455223
14.63562599609837
⋮
14.53244329771246
14.511036590832534
14.49262313519923
14.488209188829241
14.483545850682042
14.473911645940056
14.465001114453996
14.462280649869596
14.452749656547581
For example, you can plot how a few of these properties evolve through time:
time = sol.t
plot(
time,
total_biomass(sol);
xlabel = "Time",
ylabel = "Observable",
label = "Total biomass",
)
plot!(time, richness(sol); label = "Richness")
plot!(time, shannon_diversity(sol); label = "Shannon diversity")