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Introduction



Examples of graphs |

Figure: A social network.



Examples of graphs II
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Figure: Internet and WWW. Source: [1].



Examples of graphs III

Human Disease Network

Figure: Gene regulatory network of human diseases.



Examples of graphs IV
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Figure: Subway network in Berlin.



Examples of graphs (foll.) 1

Genes
Brain voxels

Figure: Bipartite networks of genes and brain voxels. Source: [3].



Examples of graphs (foll.) II
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Figure: Simplified trophic network (food web). A directed link
indicates who is the prey of whom.



Vocabulary - Basic definitions

» A graph G = (V, E) is a set of nodes (or vertices)
V ={1,...,n} and a set of edges (or links) E C V2

» n is the order; |E| is the size

» graphs can be undirected ({i,j} € E) or directed
((i,j) € E); binary (edge {i,j} is present or absent) or
weighted (present edge {7,j} has a value w;;; when w;; € N
this is a multiplicity); with or without self-loops ({7,i} is a
self-loop);

» a node is isolated if it doesn’t belong to any edge;

» a bipartite graph is s.t. V =V, UV, and V; NV, = 0 and
edges e = {u,v} € E are such that u € Vj,v € V5 (e.g.
bipartite network of genes and brain voxels)



Data structures

» Adjacency matrix A = (A;j); jev where
Aij = 1{{1,]} S E} (OI‘ Aij = wij)
» Undirected graphs have symmetric adjacency matrices
» when graphs are sparse (ie not too many edges), this
representation as a matrix is not efficient (n? size);
> List of edges: this encoding is the most efficient.

» NB: if the list of nodes is not additionally given, there
cannot be isolated nodes;

01 10011 o 12
1010000 | , 1,3
1101000 o ® 1,6
0010000 . 1,7
0000000 ° 23
1000000 ® 3,4
1000000



Data structures - Bipartite case

» A bipartite graph has np = n; + no nodes. Its adjacency
matrix A is ny X np with zero block diagonals

(Z+o)

» In ecology, the matrix A of size n; X ng is called
incidence matrix.

» Warning: in maths & CS terminology, the incidence matrix
H is a |V| x |E| matrix with entries H;e = 1 when node
1 € V belongs to edge e € E, and 0 otherwise.
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Visualisation



Different visualisations of the same graph I

Warning: Visualisation can be misleading!

Figure: 2 representations of the same blogs network [4].



Different visualisations of the same graph II

Figure: Different visualisations of the food web from Figure 6.




Different visualisations of the same graph III

Figure: Dotplot representation of a graph: random node numbering
(left) and specific permutation of the nodes (right)



Examples of representations

In circle as star randomly

Fruchterman Reingold Kamada and Kawai Multi-dimensional scaling
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Descriptive statistics



Density / Connectance

A simple binary graph has at most (g) =n(n—1)/2 edges.
Its density or connectance is:
|E| |E|

den(G) = @ = nn—1)/2°

» the complete graph K, is the undirected graph with n

n

nodes that contains all possible (2) edges; it has density 1.

P> a clique is a complete subgraph in a graph



Neighbors and degrees I
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Neighbors of node i € V are N; ={j € V,j #1i,{i,j} € E}:
nodes connected to ¢ in the graph

Degree of node i is the number of its neighbours

di = il = 30 Aig = 252 Aji

In directed graphs, one may define indegrees and
outdegrees: df“' = Zj# Ajj and di" = Z#i Aji

Degrees are obtained as rowSums or colSums of adjacency
matrix

We always have Y | d; = 2|E|
Average degree d =n"1 Y"1 | d,
a d-regular graph has constant degree d (ex infinite grid)

Hubs (informal) a hub is a large degree node in a graph



Neighbors and degrees 11

Degree distributions only loosely characterize graphs

Figure: Example of 2 graphs with same degree sequence.



Neighbors and degrees III

Graphs often show degree distributions with heavy tails, such as
scale-free distributions

Degrés des noeuds du graphe Les Misérables
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Paths, connectivity, diameter I

Paths
> A path between nodes i,j € V is a sequence of edges
e1,...,er € F such that e; and e;11 share a node, 7 € e;

and j € e. Its length is k;

» A cycle is a path that connects a node to itself; (ex: a
self-loop is a cycle of length 1)




Paths, connectivity, diameter II
Connectivity
» A set of nodes C' = {v1,...,vp} € V such that there exists

v

vvyyy

a path between any 2 nodes v;,v; € C'is a connected
component (cc);

Any graph may be decomposed into a unique collection of
maximal cc;

An isolated node forms a (maximal) cc;
There are at most n — |E| such maximal cc;
When there is a unique cc, the graph is connected;

Giant component (informal): In a sequence of graphs G,,
each with n nodes, let C), be the largest mcc in G,,. We say
that C), is a giant component if its relative size |Cy,|/n does
not tend to 0 as n increases;



Paths,

connectivity, diameter I11

Diameter

| 2

the distance £;; between 2 nodes 4, j € V' is the length of
the shortest path between 7, j (and +oo if the nodes are
not in the same cc)

the average distance in the graph is

{=1/(n(n—-1)) ZU lij

diameter diam(G) = max{(;;;4,j € V'};

It’s finite only if the graph is connected;

Small-world property (informal): a graph has the
small-world property whenever ¢ is of the order of log(n);
See the small-world experiment by Stanley Milgram; and its
modern version: three and a half degrees of separation [2]


https://en.wikipedia.org/wiki/Small-world_experiment

Clustering coefficients, transitivity, centrality I

Friends of my friends are my friends ...

| 2

Clustering coefficient C; is the number of edges |E;|
between neighbors of node i divided by the maximum of
such number d;(d; — 1)/2; i.e.

2| E4 .
C;={ @1 it di = 2,
0 otherwise

It is the connectance of the subgraph induced by the
neighbors of i; thus C; € [0, 1]

the average clustering coefficient is C = |—11/| ZiEV C;

Transitivity is

T Nb of triangles

~ Nb of triplets of connected nodes



Clustering coefficients, transitivity, centrality 11

Friends of my friends are my friends ...

®

Figure: Here C; = 1 for all nodes except a,b and thus C tends to 1.
However T tends to 0.



Clustering coefficients, transitivity, centrality III

Friends of my friends are my friends ...

Centrality
» Degree centrality Cp(i) = d;

-1
» Closeness centrality Cp(i) = (Zjev Eij> , where ¢;; is
the distance between i, j
» Betweenness centrality Cp(i) = Zj,k:#k# %_}(:), where gjj,
is the number of shortest paths from j to k, and g;;(4) is
the number of shortest paths from j to k that go through i;



Motifs |
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Figure: Examples of motifs: stars (k-stars with k = 3 and k = 8),
cliques (K3 or triangle and Kg), cycle of length 8, ...



Motifs 11
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Counting frequencies of small sizes motifs may be a way to
characterize the topology of the graph;

When the size of the motif becomes large, enumerating all
occurrences of a motif becomes a computationally difficult
problem:;

with a null model, one can test the hypothesis that the
observed frequencies of a motif are too large or too small
wrt to some expected value;
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Outline Part 1

Uncertainty and sampling
A glimpse to sampling biases



How can we sample interaction data?

Motivations

» Your dataset is sampled in some way from a more complex
system;

> Sampling data interactions can be done in many ways,
leading to various bias;

P> Necessary to understand the sampling scheme and thus the
potential bias!

2 fundamental questions

» How my interactions dataset has been sampled and which
bias does this create?

» Do the characteristics of my dataset represent the
characteristics of the larger unobserved complex system?
(difficult question, no general answer)



What

impact? Let’s take an example

We are interested in expected degree E(D).

G = (V, E) is the observed graph, sampled from an
unknown and larger G* = (V*, E*) with |V*| = n* nodes.
Sampling scheme: Assume nodes from G are taken
uniformly among those in G* and for each sampled node
1 € V, either
> 1st case: you can observe the interactions (i,j) € E* even if
j has not been sampled, i.e. j ¢V
» 2nd case: you observe the interactions (7, j) € F only if
both ¢,5 € V and (4,5) € E*,

(2) (1)

In the second case, the degree d;”’ << d;

average degrees D) = 1 ) D i ) and D@ = 1 ) S l
are in general very dlfferent and D) underestlmates E(D)
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Uncertainty and sampling

Sampling schemes



Induced and incident subgraphs samplings I

Induced subgraph sampling

» Sample n individuals without replacement from the existing
n* nodes and observe the links between these nodes.

> Example: you select a set of species and you record all
known trophic interactions between them.

» Remarks:

» you did not select the species uniformly among all possible
ones (otherwise, most probably, the graph would be empty)

> you might (or not) be able to estimate the probability of
sampling each individual (n* might be unknown);

» there might be interactions that are unknown from you
(additional error in observing the interaction, once the
nodes are sampled).



Induced and incident subgraphs samplings II

Incident subgraph sampling

» Sample m edges without replacement from the existing m*
edges, with each node incident to an edge being included in
the graph.

» Example: you have a database of recorded interactions
(trophic, mutualistic, ...) and you sample interactions in
that database. Or you observe interactions (on the field)
among all existing ones;

> Remarks:

» there is no isolated node in that graph;

> you might (or not) be able to estimate the probability of
sampling each interaction;

» you should observe in general a low average degree because
few edges are incident to the same nodes.



Link tracing sampling schemes I

General principle: Sample n individuals without replacement
from the existing n* nodes and follow paths from these nodes.

Egonetwork

» Observe edges incident to the initial set of nodes (paths of
length 1)

P 2 variants: either include or not the neighbor nodes in the
graph.

> Example: You select some plant species and observe their
interactions with pollinators. You might identify or not the
pollinator (in general, you do).

> Remarks:

» egonetworks might look like a collection of stars;
» In theory, you observe all interactions of the selected nodes
so the observed degree is the true degree.



Link tracing sampling schemes II

Snowball sampling

P Iterated egonetwork sampling: start with Vg nodes and
observe incident edges. Incident nodes are denoted V7, then
observe edges incident to V3 U V. New incident nodes are
called V5, etc .. ..

» Stop either when V}, is empty (all actors have been
sampled), or after K iterations.

» Final graph has V =VyU V3 U--- U Vi nodes and its edges
are either all or a subset of the edges from true graph G*
that are incident to nodes in V.

> Examples: Web crawling; examples in ecology? ...

» Remarks: Important degree bias: after the first step, it’s
more likely that you recruit a node with large degree.



Conclusions on sampling schemes

P> It is important to select a sampling scheme that is adapted
to the type of data AND to the questions explored.

» Keep in mind that your observed statistics might be biased
due to the sampling scheme (most of the time, difficult to
correct for that)
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