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Examples of graphs I

Figure: A social network.



Examples of graphs II

Figure: Internet and WWW. Source: [1].



Examples of graphs III

Figure: Gene regulatory network of human diseases.



Examples of graphs IV

Figure: Subway network in Berlin.



Examples of graphs (foll.) I

Figure: Bipartite networks of genes and brain voxels. Source: [3].



Examples of graphs (foll.) II

Figure: Simplified trophic network (food web). A directed link
indicates who is the prey of whom.



Vocabulary - Basic definitions

▶ A graph G = (V,E) is a set of nodes (or vertices)
V = {1, . . . , n} and a set of edges (or links) E ⊂ V 2

▶ n is the order; |E| is the size

▶ graphs can be undirected ({i, j} ∈ E) or directed
((i, j) ∈ E); binary (edge {i, j} is present or absent) or
weighted (present edge {i, j} has a value wij ; when wij ∈ N
this is a multiplicity); with or without self-loops ({i, i} is a
self-loop);

▶ a node is isolated if it doesn’t belong to any edge;

▶ a bipartite graph is s.t. V = V1 ∪ V2 and V1 ∩ V2 = ∅ and
edges e = {u, v} ∈ E are such that u ∈ V1, v ∈ V2 (e.g.
bipartite network of genes and brain voxels)



Data structures

▶ Adjacency matrix A = (Aij)i,j∈V where
Aij = 1{{i, j} ∈ E} (or Aij = wij)
▶ Undirected graphs have symmetric adjacency matrices
▶ when graphs are sparse (ie not too many edges), this

representation as a matrix is not efficient (n2 size);

▶ List of edges: this encoding is the most efficient.
▶ NB: if the list of nodes is not additionally given, there

cannot be isolated nodes;

0 1 1 0 0 1 1
1 0 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

 1

2
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1,2
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1,6
1,7
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Data structures - Bipartite case

▶ A bipartite graph has nT = n1 + n2 nodes. Its adjacency
matrix A is nT × nT with zero block diagonals(

0 Ã

Ã⊺ 0

)
▶ In ecology, the matrix Ã of size n1 × n2 is called

incidence matrix.

▶ Warning: in maths & CS terminology, the incidence matrix
H is a |V | × |E| matrix with entries Hie = 1 when node
i ∈ V belongs to edge e ∈ E, and 0 otherwise.
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Different visualisations of the same graph I

Warning: Visualisation can be misleading!

Figure: 2 representations of the same blogs network [4].



Different visualisations of the same graph II

Figure: Different visualisations of the food web from Figure 6.



Different visualisations of the same graph III
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Figure: Dotplot representation of a graph: random node numbering
(left) and specific permutation of the nodes (right)



Examples of representations
In circle
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Density / Connectance

A simple binary graph has at most
(
n
2

)
= n(n− 1)/2 edges.

Its density or connectance is:

den(G) =
|E|(
n
2

) =
|E|

n(n− 1)/2
.

▶ the complete graph Kn is the undirected graph with n
nodes that contains all possible

(
n
2

)
edges; it has density 1.

▶ a clique is a complete subgraph in a graph



Neighbors and degrees I

▶ Neighbors of node i ∈ V are Ni = {j ∈ V, j ̸= i, {i, j} ∈ E}:
nodes connected to i in the graph

▶ Degree of node i is the number of its neighbours
di = |Ni| =

∑
j ̸=iAij =

∑
j ̸=iAji

▶ In directed graphs, one may define indegrees and
outdegrees: douti =

∑
j ̸=iAij and dini =

∑
j ̸=iAji

▶ Degrees are obtained as rowSums or colSums of adjacency
matrix

▶ We always have
∑n

i=1 di = 2|E|
▶ Average degree d̄ = n−1

∑n
i=1 di

▶ a d-regular graph has constant degree d (ex infinite grid)

▶ Hubs (informal) a hub is a large degree node in a graph



Neighbors and degrees II
Degree distributions only loosely characterize graphs

Figure: Example of 2 graphs with same degree sequence.



Neighbors and degrees III

Graphs often show degree distributions with heavy tails, such as
scale-free distributions



Paths, connectivity, diameter I

Paths

▶ A path between nodes i, j ∈ V is a sequence of edges
e1, . . . , ek ∈ E such that et and et+1 share a node, i ∈ e1
and j ∈ ek. Its length is k;

▶ A cycle is a path that connects a node to itself; (ex: a
self-loop is a cycle of length 1)
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Paths, connectivity, diameter II

Connectivity

▶ A set of nodes C = {v1, . . . , vk} ∈ V such that there exists
a path between any 2 nodes vi, vj ∈ C is a connected
component (cc);

▶ Any graph may be decomposed into a unique collection of
maximal cc;

▶ An isolated node forms a (maximal) cc;

▶ There are at most n− |E| such maximal cc;

▶ When there is a unique cc, the graph is connected;

▶ Giant component (informal): In a sequence of graphs Gn

each with n nodes, let Cn be the largest mcc in Gn. We say
that Cn is a giant component if its relative size |Cn|/n does
not tend to 0 as n increases;



Paths, connectivity, diameter III

Diameter

▶ the distance ℓij between 2 nodes i, j ∈ V is the length of
the shortest path between i, j (and +∞ if the nodes are
not in the same cc)

▶ the average distance in the graph is
ℓ̄ = 1/(n(n− 1))

∑
i,j ℓij

▶ diameter diam(G) = max{ℓij ; i, j ∈ V };
▶ It’s finite only if the graph is connected;

▶ Small-world property (informal): a graph has the
small-world property whenever ℓ̄ is of the order of log(n);

▶ See the small-world experiment by Stanley Milgram; and its
modern version: three and a half degrees of separation [2]

https://en.wikipedia.org/wiki/Small-world_experiment


Clustering coefficients, transitivity, centrality I
Friends of my friends are my friends . . .

▶ Clustering coefficient Ci is the number of edges |Ei|
between neighbors of node i divided by the maximum of
such number di(di − 1)/2; i.e.

Ci =

{
2|Ei|

di(di−1) if di ≥ 2,

0 otherwise

▶ It is the connectance of the subgraph induced by the
neighbors of i; thus Ci ∈ [0, 1]

▶ the average clustering coefficient is C̄ = 1
|V |

∑
i∈V Ci

▶ Transitivity is

T =
Nb of triangles

Nb of triplets of connected nodes



Clustering coefficients, transitivity, centrality II
Friends of my friends are my friends . . .

Figure: Here Ci = 1 for all nodes except a, b and thus C̄ tends to 1.
However T tends to 0.



Clustering coefficients, transitivity, centrality III
Friends of my friends are my friends . . .

Centrality

▶ Degree centrality CD(i) = di

▶ Closeness centrality CP (i) =
(∑

j∈V ℓij

)−1
, where ℓij is

the distance between i, j

▶ Betweenness centrality CB(i) =
∑

j,k:j ̸=k ̸=i
gjk(i)
gjk

, where gjk

is the number of shortest paths from j to k, and gjk(i) is
the number of shortest paths from j to k that go through i;



Motifs I

Figure: Examples of motifs: stars (k-stars with k = 3 and k = 8),
cliques (K3 or triangle and K6), cycle of length 8, . . .



Motifs II

▶ Counting frequencies of small sizes motifs may be a way to
characterize the topology of the graph;

▶ When the size of the motif becomes large, enumerating all
occurrences of a motif becomes a computationally difficult
problem;

▶ with a null model, one can test the hypothesis that the
observed frequencies of a motif are too large or too small
wrt to some expected value;
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How can we sample interaction data?

Motivations

▶ Your dataset is sampled in some way from a more complex
system;

▶ Sampling data interactions can be done in many ways,
leading to various bias;

▶ Necessary to understand the sampling scheme and thus the
potential bias!

2 fundamental questions

▶ How my interactions dataset has been sampled and which
bias does this create?

▶ Do the characteristics of my dataset represent the
characteristics of the larger unobserved complex system?
(difficult question, no general answer)



What impact? Let’s take an example

▶ We are interested in expected degree E(D).

▶ G = (V,E) is the observed graph, sampled from an
unknown and larger G⋆ = (V ⋆, E⋆) with |V ⋆| = n⋆ nodes.

▶ Sampling scheme: Assume nodes from G are taken
uniformly among those in G⋆ and for each sampled node
i ∈ V , either
▶ 1st case: you can observe the interactions (i, j) ∈ E⋆ even if

j has not been sampled, i.e. j /∈ V
▶ 2nd case: you observe the interactions (i, j) ∈ E only if

both i, j ∈ V and (i, j) ∈ E⋆,

▶ In the second case, the degree d
(2)
i << d

(1)
i .

▶ average degrees D̄(1) = 1
n

∑n
i=1 d

(1)
i and D̄(2) = 1

n

∑n
i=1 d

(2)
i

are in general very different and D̄(2) underestimates E(D).
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Induced and incident subgraphs samplings I

Induced subgraph sampling

▶ Sample n individuals without replacement from the existing
n⋆ nodes and observe the links between these nodes.

▶ Example: you select a set of species and you record all
known trophic interactions between them.

▶ Remarks:
▶ you did not select the species uniformly among all possible

ones (otherwise, most probably, the graph would be empty)
▶ you might (or not) be able to estimate the probability of

sampling each individual (n⋆ might be unknown);
▶ there might be interactions that are unknown from you

(additional error in observing the interaction, once the
nodes are sampled).



Induced and incident subgraphs samplings II

Incident subgraph sampling

▶ Sample m edges without replacement from the existing m⋆

edges, with each node incident to an edge being included in
the graph.

▶ Example: you have a database of recorded interactions
(trophic, mutualistic, . . . ) and you sample interactions in
that database. Or you observe interactions (on the field)
among all existing ones;

▶ Remarks:
▶ there is no isolated node in that graph;
▶ you might (or not) be able to estimate the probability of

sampling each interaction;
▶ you should observe in general a low average degree because

few edges are incident to the same nodes.



Link tracing sampling schemes I

General principle: Sample n individuals without replacement
from the existing n⋆ nodes and follow paths from these nodes.

Egonetwork

▶ Observe edges incident to the initial set of nodes (paths of
length 1)

▶ 2 variants: either include or not the neighbor nodes in the
graph.

▶ Example: You select some plant species and observe their
interactions with pollinators. You might identify or not the
pollinator (in general, you do).

▶ Remarks:
▶ egonetworks might look like a collection of stars;
▶ In theory, you observe all interactions of the selected nodes

so the observed degree is the true degree.



Link tracing sampling schemes II

Snowball sampling

▶ Iterated egonetwork sampling: start with V0 nodes and
observe incident edges. Incident nodes are denoted V1, then
observe edges incident to V1 ∪ V0. New incident nodes are
called V2, etc . . . .

▶ Stop either when Vk is empty (all actors have been
sampled), or after K iterations.

▶ Final graph has V = V0 ∪ V1 ∪ · · · ∪ VK nodes and its edges
are either all or a subset of the edges from true graph G⋆

that are incident to nodes in V .

▶ Examples: Web crawling; examples in ecology? . . .

▶ Remarks: Important degree bias: after the first step, it’s
more likely that you recruit a node with large degree.



Conclusions on sampling schemes

▶ It is important to select a sampling scheme that is adapted
to the type of data AND to the questions explored.

▶ Keep in mind that your observed statistics might be biased
due to the sampling scheme (most of the time, difficult to
correct for that)
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