Consequences of network structure on ecosystem functioning

Elisa Thébault

Diversity and ecosystem functioning

Tilman et al. (2006)

Hector et al. (2010)

Diversity and ecosystem functioning in ecological networks

Complementarity of the predation network

Poisot et al. 2013

Diversity of pollinators and functioning

PLOS BIOLOGY January 2006 | Volume 4 | Issue 1 | e1 Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities Colin Fontaine^{1,2*}, Isabelle Dajoz^{1,2}, Jacques Meriguet^{1,2}, Michel Loreau^{2,3}

Pollinators species	Mouthpart	Theoreti	Theoretical pollination network		Accessibility	
and groups	length (mm ± S.E.)	n			pollen	nectar
Sphaerophoria sp.	2.66 ± 0.35			M. officinalis	easy	easy
E. balteatus	$\textbf{2.3} \pm \textbf{0.20}$			E. cicutarium	easy	easy
E. tenax	$\textbf{5.47} \pm \textbf{0.29}$	Syrphid-flie	Open flower	R. raphanistrum	easy	difficult
B. terrestris	9.02 ± 0.19	100 4	$\rightarrow 1$	M. guttatus	easy	difficult
B. hortorum	$9.21 \pm \textbf{1}.02$	T.	\mathcal{D}^{\sim}	M. sativa	difficult	difficult
B. lapidarius	8.10 ± 0.86	Bumble-bee	Tubular flower	L. corniculatus	difficult	difficult

Diversity of pollinators and functioning

PLOS BIOLOGY January 2006 | Volume 4 | Issue 1 | e1 Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities Colin Fontaine^{1,2*}, Isabelle Dajoz^{1,2}, Jacques Meriguet^{1,2}, Michel Loreau^{2,3}

Diversity of pollinators and functioning

PLOS BIOLOGY January 2006 | Volume 4 | Issue 1 | e1 Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities Colin Fontaine^{1,2*}, Isabelle Dajoz^{1,2}, Jacques Meriguet^{1,2}, Michel Loreau^{2,3}

Diversity of pollinators and functioning ochen Frühd,^{1,5} Carsten F. Dormann,^{2,3} Andrea Holzschull,^{1,4} and Teja Tscharntke¹

Bee diversity effects on pollination depend on functional complementarity and niche shifts

Ecology, 94(9), 2013, pp. 2042-2054

Diversity of pollinators and functioning other Frond,^{1,5} Carsten F. Dormann,^{2,3} Andrea Holzschuh,^{1,4} and Teja Tscharntke¹

Bee diversity effects on pollination depend on functional complementarity and niche shifts

Ecology, 94(9), 2013, pp. 2042-2054

The structure of host-parasitoid networks and functioning

Complementarity and redundancy of interactions enhance attack rates and spatial stability in host-parasitoid food webs

Guadalupe Peralta,^{1,6} Carol M. Frost,¹ Tatyana A. Rand,² Raphael K. Didham,^{3,4} and Jason M. Tylianakis^{1,5}

Peralta et al. 2014

Network structure allows to describe complementarity and redundancy among species

Direct links with the study of ecosystem functions and stability

Cascading effects in networks? Network structure and indirect interactions

Understanding indirect effects: a central issue in ecological networks

Understanding direct and indirect effects: studies on network motifs

Understanding direct and indirect effects: studies on network motifs

Effects can differ from predictions

Table 1 Qualitative effects of nutrient enrichment as predicted by two linear food-chain models and corresponding experimental results in mesocosms

	Model p	redictions	Experimen	Experimental results		
	Prey dependence	Ratio dependence	Without fish	With fish		
Carnivores	+	+	_	§		
Herbivores	0	+	ns	ns		
Autotrophs	+	+	ns	ns		
Phosphorus	0	+	ns	+		

Qualitative effects are indicated by their sign: +, 0 and – denote a positive effect, no effect and a negative effect, respectively, of nutrient enrichment on density. Experimental results: + and – denote a significant positive effect and a significant negative effect, respectively ($P \le 0.05$); brackets, marginally significant effect (0.05 < $P \le 0.10$); ns, nonsignificant effect (P > 0.10); §, no test possible because the sum of invertebrate carnivores density and fish biomass is senseless.

Hulot et al. Nature 2000

Need to consider food web structure

Simplified pelagic food web

(from Carpenter et Kitchell, 1993, *The trophic cascade in lakes,* Cambridge University Press).

Direct positive effect
Direct negative effect

Hulot et al. Nature 2000

Hulot et al. Nature 2000

Understanding direct and indirect effects: studies on network motifs

Understanding direct and indirect effects apparent competition

Morris et al. 2004

Understanding direct and indirect effects apparent competition

Morris et al. 2004

Important applications for management

Carvalheiro et al. (2014)

Indirect effect of species *j* on species *i*:

 $d_{ij} =$

The Structure of an Aphid-Parasitoid Community

C. B. Muller; I. C. T. Adriaanse; R. Belshaw; H. C. J. Godfray

The Journal of Animal Ecology, Vol. 68, No. 2 (Mar., 1999), 346-370.

Prey

Indirect effect of species *j* on species *i*:

C. B. Muller; I. C. T. Adriaanse; R. Belshaw; H. C. J. Godfray

The Journal of Animal Ecology, Vol. 68, No. 2 (Mar., 1999), 346-370.

Indirect effect of species *j* on species *i*:

Fraction of predators of species *i* that belong to predator species *k*

C. B. Muller; I. C. T. Adriaanse; R. Belshaw; H. C. J. Godfray

The Journal of Animal Ecology, Vol. 68, No. 2 (Mar., 1999), 346-370.

Predators or parasitoids

Prey

 $\frac{-}{\alpha_{il}} \times \vdash$

 α_{mk}

Indirect effect of species *j* on species *i*:

 $d_{ij} = \sum_{k}$

The Structure of an Aphid-Parasitoid Community

C. B. Muller; I. C. T. Adriaanse; R. Belshaw; H. C. J. Godfray

The Journal of Animal Ecology, Vol. 68, No. 2 (Mar., 1999), 346-370.

Fraction of predators of species *i* that belong to predator species k

Fraction of predator species k attacking species *j*

Prey

Predators or parasitoids

Indirect effect of species *j* on species *i*:

$$d_{ij} = \sum_{k} \left(\frac{\alpha_{ik}}{\sum_{l} \alpha_{il}} \times \frac{\alpha_{jk}}{\sum_{m} \alpha_{mk}} \right)$$

 $d_{ji} \neq d_{ij}$

The Structure of an Aphid-Parasitoid Community

C. B. Muller; I. C. T. Adriaanse; R. Belshaw; H. C. J. Godfray

The Journal of Animal Ecology, Vol. 68, No. 2 (Mar., 1999), 346-370.

Prey

Primary parasitoids (scale: aphids imes 58

Competition or facilitation in plant-pollinator networks?

Complex indirect interactions among plants and among pollinators, importance of the balance between mutualism and competition

Bastolla et al. (2009) Valdovinos et al. (2016)

Competition or facilitation in plant-pollinator networks?

Complex indirect interactions among plants and among pollinators, importance of the balance between mutualism and competition

Bastolla et al. (2009) Valdovinos et al. (2016)

Bergamo et al. 2021

Competition or facilitation in plant-pollinator networks?

Complex indirect interactions among plants and among pollinators, importance of the balance between mutualism and competition

Bastolla et al. (2009) Valdovinos et al. (2016) 80 В 2016 2017 60 Α Seeds per flower Pollinators 40 Facilitation Competition 20 Fitness Plants Species B Species A High High 0 acting target Target degree Target degree 0.2 0.4 0.6 0.8 1.0 degree degree

Target degree

Bergamo et al. 2021

Predicting cascading effects in complex ecological networks?

Need for a dynamical perspective and accounting for long indirect pathways

Pires et al. (2020)

Interaction coeff.

$$\frac{dB_i}{dt} = b_i B_i + \sum_{j=1}^n c_{ij} B_j B_i$$

on prey i

 $\alpha_{ji} = c_{ji}B_j^*$ Per capita effect of prey i on pred j

De Ruiter et al. 1995 Science

Estimating direct and indirect effects in networks

prey i on pred j

Nakajima and Higashi (1995)

« Diffuse effects in food webs »

	1	2	3			1	2	3	
	0	_		1		—	_	+	1
C =	+	0	_	2	${f C}^{-1} =$			-	2
	_+	_	0	3					3

Montoya et al. 2009

TABLE 3.	Sign	structure	of	the	Jacobian	matrix	С	and	of	its
inverse	\mathbf{C}^{-1} .									

	S	Same sign $\%$ log mean $ c_{ij} $		Different sign		
Food web	%			log mean $ c_{ij} $		
Ythan	54.4	-1.41***	45.6	-1.59***		
Broadstone	54	0.16***	46	-0.28***		
Soil 1	63.1	0.38	36.9	0.17		
Soil 2	53.8	0.12***	46.2	0.46***		
Soil 3	63.2	0.45***	36.8	0.3***		
Soil 4	57.9	0.44	42.1	0.46		
Soil 5	66.7	0.78***	33.3	0.55***		
Soil 6	77.8	0.85***	22.2	-0.20^{***}		
Soil 7	57.5	0.13***	42.5	-0.04^{***}		
Mean	60.93		39.07			

Bioenergetic model of Yodzis and Innes (1992)

$$\frac{dC}{dt} = C \left(-T + (1 - \delta)J_{\max} \frac{R^n}{R^n + R_0^n} \right)$$
$$\frac{dR}{dt} = rR \left(1 - \frac{R}{K} \right) - C \frac{J_{\max}}{f_e} \frac{R^n}{R^n + R_0^n}$$

T = mass-specific respiration rate of the population $T = a_T m_C^{-0.25}$ (respiration per unit biomass)

Bioenergetic model of Yodzis and Innes (1992)

$$\frac{dC}{dt} = C \left(-T + (1 - \delta)J_{\max} \frac{R^n}{R^n + R_0^n} \right)$$
$$\frac{dR}{dt} = rR \left(1 - \frac{R}{K} \right) - C \frac{J_{\max}}{f_e} \frac{R^n}{R^n + R_0^n}$$

T = mass-specific respiration rate of the population (respiration per unit biomass)

$$T = a_T m_C^{-0.25}$$

J = mass-specific ingestion rate of the population

$$(1 - \delta)J_{\text{max}} = f_J a_J m_C^{-0.25}$$

Bioenergetic model of Yodzis and Innes (1992)

$$\frac{dC}{dt} = C \left(-T + (1 - \delta)J_{\max} \frac{R^n}{R^n + R_0^n} \right)$$
$$\frac{dR}{dt} = rR \left(1 - \frac{R}{K} \right) - C \frac{J_{\max}}{f_e} \frac{R^n}{R^n + R_0^n}$$

T = mass-specific respiration rate of the population (respiration per unit biomass)

J = mass-specific ingestion rate of the population r = intrinsic production-biomass ratio

$$T = a_T m_C^{-0.25}$$

(1-\delta) $J_{\text{max}} = f_J a_J m_C^{-0.25}$
 $r = f_r a_r m_R^{-0.25}$

Predicting cascading effects in complex food webs?

Predicting cascading effects in complex food webs?

Iles & Novak 2016

Part III: Cascading effects in networks Network structure and indirect interactions Some conclusions and perspectives

Importance of indirect interactions: network structure matters for understanding cascading effects in ecological communities

> Can we predict consequences of perturbations on ecological networks?

> Which network structures limit the spread of cascading effects?