Structure of ecological
networks: what do we know?
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Analysing the structure of ecological networks:
looking for general patterns?
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Analysing the structure of ecological networks:
looking for general patterns?

Part 1: examples of two historical patterns studied in food webs:

 The relationship between species diversity and the number of
links/connectance

* The maximum food chain length
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The diversity — connectance relationship

S — number of species
L — number of links
Linkage density — average number of feeding links per species: L/S

Connectance (C): proportion of possible links that is realised (a function of S
and L)

What is the number of possible links?

Number of realised links (L) Depends on
C= _ _ 1. whether links are directed
Number of possible links 2. whether cannibalism is included

3. Whether the network is bipartite or not



The diversity — connectance relationship

Link species scaling law (constant link density)

VS. Cohen and Briand 1984
Constant connectance hypothesis
9 Martinez 1992
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L = aS’

The diversity — connectance relationship

Link species scaling law (constant link density)
VS.
Constant connectance hypothesis
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The diversity — connectance relationship

A matter of data resolution?
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The diversity — connectance relationship
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Links

The diversity — connectance relationship

Depends on interaction type, ecosystem type, etc.
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The diversity — connectance relationship

Relation at the network level?

b
300 A

250 -

200 -

150 o

100 o

50

@ 1.00
e 025
0.10
0.05

T
75 100 125 150

\
. Existing species

Removed species

O \ O Secondary extinction

— Existing link

Removed link

Carpentier et al. 2021

0.30

0.25

0.20

Frequency
o
o

o
=
o

0.05

0.00

e Mutualistic
Trophic
] All networks




Analysing the structure of ecological networks:
looking for general patterns?

Part 1: examples of two historical patterns studied in food webs:

 The relationship between species diversity and the number of
links/connectance

* The maximum food chain length



Specific food web metrics

Number of trophic levels (or minimal chain length between top predators and basal
species)

_ N,ap
Relative species number at the different trophic levels =1+ Z

Proportion of omnivores

=[1-G'1'1

Trophic chain: representation of
matter or energy flow froma | = @B - 5 >Trophic level > 4
basal species to a top predator.

_____________ 4 >Trophic level > 3
_______________________________________ Trophic level 3

Trophic level: position in
the trophic chain, .
determinedbythe | @ &5 09000 Trophic level 2
number of energy

transfers up to this level.

.......... Trophic level 1



Maximum food chain length is generally low (<6)
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Maximum food chain length is generally low (<6)

NUMBER OF WEBS
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What limits food chain length?
Several theories

» Limitation by available resources

Hutchinson 1959, Oksanen
1981, ...

Inefficiency of energy transfer: Typically only about 10-15% of consumed prey
biomass is converted into predator biomass. (Slobodkin 1960)



What limits food chain length?
Several theories

» Limitation by available resources

Hutchinson 1959, Oksanen
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What limits food chain length?
Several theories

» Limitation by available resources
Hutchinson 1959, Oksanen

1981, ...
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What limits food chain length?
Several theories

» Limitation by ecosystem size

Schoener 1989, Cohen & Newman
1991, ...



What limits food chain length?
Several theories

» Limitation by ecosystem size

Schoener 1989, Cohen & Newman
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Food chain length

What limits food chain length?
Several theories

» Limitation by ecosystem size

Schoener 1989, Cohen & Newman

1991, ...
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Regression coefficient
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What limits food chain length?
Several theories
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Regression coefficient

Ecosystem size
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Analysing the structure of ecological networks:
looking for general patterns?

Part 1: examples of two historical patterns studied in food webs:

* The relationship between species diversity and the number of
links/connectance

 The maximum food chain length

> Historically focused on a few sets of network and species level properties

» A strong focus on food webs




Analysing the structure of ecological networks:
looking for general patterns?

Part 2: examples of more recent patterns studied in ecological networks:
* Distribution of degrees and interaction strengths

* Looking for groups

* How networks vary in space and time

 Comparing networks of different interaction types



cumulative distribution

Degree distributions
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Interaction strength distributions
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Interaction strength distributions: consequences on stability

A Negative consumer effects
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Degree distributionfit (r2)  Nestedness “temperature” (°) Connectance

Degree distribution (AAIC)

Unweighted metrics
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Degree distribution (AAIC)
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LETTER Abundance and generalisation in mutualistic networks:

solving the chicken-and-eqqg dilemma
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Niche-based vs. impact-based network analysis?

Basic and
Applied Ecology

www.elsevier.de/baae

GfO

GfO Ecological Society of Germany,
Austria and Switzerland

ELSEVIER Basic and Applied Ecology 11 (2010) 185-195

INVITED VIEWS IN BASIC AND APPLIED ECOLOGY

Why network analysis is often disconnected from community ecology:
A critique and an ecologist’s guide

Interpretations can be:

Nico Bliithgen™

(1) niche-based, describing specialisation, trait (mis-)matching between species, niche breadth and niche overlap and
their relationship to interspecific competition and species coexistence, or

(2) impact-based, focusing on frequencies of interactions between species such as predation or infection rates and
mutualistic services, aiming to quantify each species’ relative contribution to an ecological effect.

Pollinators on plants

Interaction frequency

Plants on pollinators
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Analysing the structure of ecological networks:
looking for general patterns?
Part 2: examples of more recent patterns studied in ecological networks:
e Distribution of degrees and interaction strengths
* Looking for groups
* How networks vary in space and time

 Comparing networks of different interaction types



Caribbean food web
Rezende et al. (2009)

Mo

ularity

Chesapeake Bay food web
Krause et al. (2003)
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Scientific name or
classification
Phytoplankton

Benthic producers
Bacteria <1 pm (small)
Bacteria >1 <2 um (medium)
Bacteria >2 um (large)
Acartia tonsa (copepod)
Micro ciliates

Macro ciliates
Predaceous ciliates
Chrysaora quinquecirrha
(sea nettle)

Mnemiopsis leidyi
(comb jelly)

Nemopsis bachei (jellyfish)
Cladocera

Other zooplankton
Anchoa mitchilli larvae
(anchovy)

Anchoa mitchilli eggs
Fish larvae

)
Nereis succinea (polychaete)
Hetermastus filiformis

Leptocheirus plumulosus
{amphipod)

Other meiofauna

Macoma balthica

(Baltic clam)

Macoma mitchelli

(rosy clam)

Rangia cuneata

(wedge clam)

Mulinia lateralis (coot clam)
Mya arenaria

(soft-shelled clam)
Crassostrea virginica (oyster)
Callinectes sapidus

(blue crab)

Anchoa mitchilli

(bay anchovy)
Mi undulatus

Trinectes maculatus

(hogchoaker)

Leiostomus xanthurus (spot)
Cynoscion regalis (weakfish)
Alosa sapidissima
(American shad)

Alosa pseudoharengus
(alewife)

Alosa aestivalis

(blue-back herring)
Brevoortia tyranus
(menhaden)

Morone americana

(white perch)

Morone saxatilis

(striped bass)

Pomatomus saltatrix
(bluefish)

Paralichthys dentatus
(flounder)

Arius felis (catfish)




The trophic group: a classical notion in food web ecology

i\, Zooplankton

\|/ Benthic
autotrophs

Phytoplankton




Which is the notion of group that best describes food web structure?

Trophic groups Modularity
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Which is the notion of group that best describes food web structure?

Z
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Which is the notion of group that best describes food web structure?

species - module-AP
(links) overlap
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Groupes trophiques vs. modules?

Trophic groups Modules



Groupes trophiques vs. modules?

Trophic groups Modules

Diversity of module affiliation in trophic groups is significantly lower than
random expectations (p<0.0001 for all 9 food webs)

Each trophic group belongs generally to a single module.



Groupes trophiques vs. modules?

DR RN !

N

Trophic groups Modules

Variance of species trophic levels within trophic groups is always lower than
random expectations (p<0.0001 for all 9 food webs)

Variance of species trophic levels within modules is always higher than random
expectations (p<0.0001 for all 9 food webs)



Looking for groups, a classical question with interesting insights on the
structure of ecological networks

Food webs have a 2-level hierarchical structure:
(1) modules partition food webs into large bottom-top trophic pathways
(2) trophic groups further partition these pathways into sets groups of species with

similar trophic connections.

Modules and trophic groups thus provide complementary pictures of food-web
structure



» Bottom-up and top-down effects strongly
depend on network structure
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Predicting cascading effects in food webs?

Weddell Sea
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Module

Eskuche-Keith et al. 2023
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» Importance of energy chanels
and trophic groups?




Analysing the structure of ecological networks:
looking for general patterns?
Part 2: examples of more recent patterns studied in ecological networks:
e Distribution of degrees and interaction strengths
* Looking for groups
* How networks vary in space and time

 Comparing networks of different interaction types



Network beta-diversity in time

Ecology Letters, (2017) 20: 385-394 doi: 10.1111/ele.12740

LETTER Interaction rewiring and the rapid turnover of plant—pollinator

networks

CaraDonna et al. 2017

»

n=__ ” y
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“few species and interactions were consistently present in all four annual plant—pollinator networks (53% of

the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in
species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons
among years), and less the effect of species flexibility to interact with new partners (c. 30%).”

Petanidou et al. 2008



LETTER Interaction rewiring and the rapid turnover of plant—pollinator

Network beta-diversity in time

Ecology Letters, (2017) 20: 385-394

doi: 10.1111/ele.12740

networks

CaraDonna et al. 2017
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Interaction dissimilarity

Article

Network beta-diversity in space

https://doi.org/10.1038/s41467-022-34355-w

Global and regional ecological boundaries
explain abrupt spatial discontinuities in
avian frugivory interactions

Martins et al. 2022
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Beta-diversity of networks in space and time

» Ecological interactions among species vary a lot in space and time, even at small spatial
and temporal scales

» Structure of networks might vary less over space and time, how species change their
network role in space and time?

» Need to understand how species traits, abundances, environmental conditions affect such
variations in space and time



Analysing the structure of ecological networks:
looking for general patterns?

Part 2: examples of more recent patterns studied in ecological networks:
e Distribution of degrees and interaction strengths

* Looking for groups

* How networks vary in space and time

 Comparing networks of different interaction types
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Nested structure

e Continuum between specialist and generalist species
* Presence of a core of highly connected species

e Asymmetrical specialization

Mutualistic webs : a focus on nestedness

pollination

Bascompte et al. (2003)



Mutualistic webs : a focus on nestedness

PROCEEDINGS

—OF Proc. R. Soc. B(2007) 274, 591-598
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SOCIETY Published online 29 November 2006

Finding NEMO: nestedness engendered by
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marine cleaning symbiosis:

is it like flowers and bees? The Nested Assembly of Plant Facilitation Networks

Prevents Species Extinctions
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Comparing mutualistic and antagonistic webs: the example of plant-

pollinator and plant-herbivore webs

Mutualistic
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Nestedness and modularity
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Niche conservatism of mutualistic and antagonistic interactions

Niche conservatism: tendency of related species to share interaction partners



Niche conservatism of mutualistic and antagonistic interactions

Niche conservatism: tendency of related species to share interaction partners

Proportions of networks of each type with a significant
correlation between taxonomic and ecological distance

matrices:
Pollination networks Herbivory networks
Insect side 0.80 0.43
Plant side 0.51 0.58

Correlation between taxonomic and ecological

distance
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The structure of plant-insect networks partly
depends on the type of interaction considered
(mutualism or antagonism)



What could explain these different structures?

Different plant traits involved in these interactions
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What could explain these different structures?

Different plant traits involved in these interactions

(A) Floral signal convergence: pollination syndromes
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(a)
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Schiestl and Johnson (2013)



What could explain these different structures?

- Evolutionary and neutral processes
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What could explain these different structures?

- Evolutionary and neutral processes
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1)

nestedness (s
o 20 3 40 50 &0

Z=ymiue for neatedness (M)

What could explain these different structures?

- Evolutionary and neutral processes
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»

T T T T 1
0.1 0.2 0.3 0.4 0.5
modularity (s=1)

Antagonism

ity {NM2)

Z=vaue for modula

Antagonism

i
D E

(d)

'
- 1
1 '
' 1
Q )
:
T T

'R &R

Maliet et al. (2020)



1)

nestedness (s

Z=ymiue for neatedness (M)

What could explain these different structures?

- Evolutionary and neutral processes

(a)
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Does the structure of ecological networks differ between different
types of interactions?
Conclusion and perspectives

e Structures of plant-herbivore and plant-pollinator networks seem to differ

eNeed to compare other interaction webs: how general are the observed
patterns? Does it relate to particular traits involved in different interactions?



Does the structure of ecological networks differ between different
types of interactions?
Conclusion and perspectives
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Does the structure of ecological networks differ between different
types of interactions?

» Trophic and non-trophic interactions: the example of
the network of a coastal ecosystem in Chile

A) Trophic B) Positive non-trophic



Does the structure of ecological networks differ between different
types of interactions?
Conclusion and perspectives
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Does the structure of ecological networks differ between different
types of interactions?
Conclusion and perspectives

e Structures of plant-herbivore and plant-pollinator networks seem to differ

e Need to compare other interaction webs: how general are the observed
patterns? Does it relate to particular traits involved in different interactions?

e Need new theory to understand how ecological and evolutionary processes
determine these different structures

e Move beyond studying networks of different interactions in isolation?



« Structure of ecological networks: what do we know? »
Some concluding thoughts

» Many metrics and ways to study ecological networks: easy to be lost
mm) Keep in mind your questions of interest

» Some properties that seem consistent over different ecological networks

» Towards network analyses that integrate different interaction types and spatial and
temporal dimensions

» Importance of traits and species phylogeny for understanding the structure of interaction
networks: can we infer interaction between species?

» Still some limits to describe interactions between species in ecology: how to better
integrate biases due to sampling in the study of network structure?



